Aquatic Ecosystem Response to Timber Harvesting for the Purpose of Restoring Aspen
نویسندگان
چکیده
The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S) showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management practices, conifer removal to restore aspen stands can be conducted without degrading aquatic ecosystems.
منابع مشابه
Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effe...
متن کاملAssessment of aquatic environmental quality using gyrodactylus sp. as a living probe: parasitic biomonitoring of ecosystem health
Biological indicators are species that can be employed to monitor environmental quality and ecosystem health. Different groups of organisms such as plants, animals, bacteria and parasites regularly produce certain molecular signal in response to changes in their environmental milieu. Parasites are important tools for providing wealth of information on physicochemical quality, environmental stre...
متن کاملChanges in winter conditions impact forest management in north temperate forests.
Climate change may impact forest management activities with important implications for forest ecosystems. However, most climate change research on forests has focused on climate-driven shifts in species ranges, forest carbon, and hydrology. To examine how climate change may alter timber harvesting and forest operations in north temperate forests, we asked: 1) How have winter conditions changed ...
متن کاملRole of rainwater harvesting for improving the human well-being and ecosystem services
Ecosystem services are fundamental for human well-being and are the basis of rural livelihoods, particularly for poor people. Rainwater harvesting can serve as an opportunity to enhance ecosystem productivity, thereby improving livelihoods, human well-being, and economies. Rainwater harvesting has been shown to create synergies between landscape management and human well-being. These synergi...
متن کاملSustainable forestry in the tropics: panacea or folly?
12 The profitability of uncontrolled logging can be a significant obstacle to sustainable forest 13 management, especially in the tropics. Rice et al. (1997) have argued that not only does 14 traditional selective logging provide higher returns but also incurs less damage to forests than 15 sustainable forest management systems that involve harvesting of many species and the creation 16 of larg...
متن کامل